## Archive for the ‘Math 132’ Category

I’m teaching a “Mathematical Analysis for Business” course at a Community College. Mostly it’s a quick survey of (the more-or-less standard) Precalculus topics (other than Trig). Way *too* quick, indeed: ideas taking weeks for similarly-abled students to understand in Precalc are alloted mere days in this course … the old “mile-wide, inch-deep” problem. But that’s another rant. Today I want to talk about what *I’ve* learned from this course: Annuities and Amortizations and suchlike Business Math (rightly so-called). But *really* about teaching: I hope to throw some light on some phenomena that could just as well be illustrated with any number of other topics. Here we go.

I posted some calculator code recently for evaluating . This quantity is used in calculating, for example, the “Present Value” of an annuity. Specifically (in our text, whose notations I’ll [mostly] follow just in case any current student of mine should happen to read this post), this is given by , where is the periodic payment, is the *number* of periodic payments, and is the periodic rate (unfortunately … there’s some room for improvement here since the text *also* sometimes uses for the *nominal* rate [AKA the APR]). Thus, for example, if I were to have been frightened by a cabal of unscrupulous bankers and lawyers into agreeing to pay $30 every month for the next 33 years (what is in fact the case), and if my bank will pay me 4% (annual) interest on a savings account, compounded monthly (which might be about right; I don’t know and don’t much care), and if I had a big pot of money (unlikely at best), then I could calculate the “Present Value” of my future payments: and cover the debt by depositing this amount once-for-all.

The text *derives* the formula for (pronounced “a-angle-n at r”, by the way)—as well they should … unfortunately, they use “Sigma notation” to do it, and this population of students aren’t prepared to actually *read* the derivation with understanding (nor, as I’ve already hinted, is there anything like time enough to prepare ’em to read it now). Luckily, the whole thing can be done *without* Sigmas, so I did that (and, with any luck, at least one student got something out of it since it took an entire lecture).

All of the substantial *mathematics* for these sections of the text is done once the a-angle-n formula is derived; everything else follows from this derivation by very simple algebra (which, yes, does of course count as substantial *somewhere* … but not here: all of these students knew how to solve linear equations before they ever saw my face or cracked this book). So *I* say: let’s make this as clear as we know how. For example, since finding when , , and are known is *obviously* accomplished by , let’s put the stress *right there* instead of, for heck sake, expanding the “angle” symbol to get .

Now, of course, this represents the same number … but it might not be *obviously* the same. Anyway, it seems to miss the whole point of having given a name in the first place! It’s one of the main tricks of the algebraic method: anything you’re going to need to keep referring to again and again in performing calculations should be *given a name*: “ stands for the Unknown Quantity” in what seems likely to be the best-known example. And on and on it goes. It’s *easy* (for students like mine) to understand that if payments are made at the *beginning* of the pay period, rather than at the end (so-called “annuities due” as opposed to “ordinary annuities”), then the first payment earns no interest and there are *more* payments after that, so one has … so why *obscure* this simple fact by displaying instead (as if this were some whole new idea)?

It gets worse. The final exam is written by the course co-ordinators; well and good. They’ve also prepared a review packet; better still. Trouble is, there’s a “Formula Sheet” with a *whole bunch* of the messy formulas and *no mention at all* of ! It begins to appear that somebody’s going out of their way to prevent us from doing this right.

Here’s some calculator code for yesterday’s formulae:**AANGLE:Prompt N,R:(1-(1+R)^-N)/RA:Disp A, AFrac**

To produce this code, first enter the programming interface (push the **PRGM** button). We’re creating a new program, so select **NEW** and enter its name (AANGLE, say). Hit enter; we’re editing the new program. Now type **PRGM** again (this puts us in the PRGM submenu of the programming interface); select **I/O** (with the “arrow” keys; I/O stands for “Input/Output”) and then select **Prompt**. The symbols N and R are produced with the **ALPHA** key in the usual way; the comma is above the **7**. The rest of the code follows easily (**Disp** is of course also found in the **I/O** submenu).

Now we can *forget* the formula for (and never mind the tables in the back of the book). The first thing to notice about this procedure is how doggone easy it is. Indeed, as far as I know, it’s *much* easier than it would be on a Windows box. It *was* this easy in DOS (the predecessor to Windows) since BASIC was standard on DOS boxes. Several generations of computer coders have a great deal to answer for.

Yesterday we loaded programs AANGLE and SANGLE, used in computing annuities. For the record, one has and . I’ve gotta go mark papers; if the actual rant on this material ever materializes, it won’t be till tomorrow at the soonest.