go with the flow

s:=
[1^2, 2^2, 3^2, 4^2, …]=
[1,4,9,16,…]=
[n^2]_(n \in \Bbb N).

\Bbb N =: “\Bbb N”
NB: 0 \in \Bbb N.
******************************************

S := x + 4x^2 + 9x^3 + …

(S = \sum_{i = 1}^\infty i^2x^i)
******************************************
(1-x)*S = x + 3x^2 + 5x^3 + 7x^4 + …
(1-x)^2*S = x + 2x^2 + 2x^3 + 2x^4 + …
(1-x)^3*S = x + x^2

S = (x+x^2)/(1-x)^3
******************************************
(
x = 1/10

S = .1 + 4*.01 + 9*.001 + 16*.0001 + …
S ~ .150892
S = (.1+.01)/(.9)^3
S ~ .150892
OK
)

Advertisements




Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s



%d bloggers like this: